![]() |
| Este olog usa símbolos, em vez de palavras, para mostrar a relação entre forma e função presente na teia de aranha e em uma composição musical.[Imagem: Markus Buehler/Tristan Giesa] |
Relação entre forma e função
Cientistas descobriram uma relação matemática que mostra uma analogia precisa entre a estrutura física da teia de aranha e a estrutura sonora de uma música.
Isto prova, segundo eles, que a estrutura de cada uma delas tem uma relação similar com a sua função.
Ou seja, a "lei" matemática que descreve a relação entre as proteínas que formam a teia de aranha e suas propriedades de resistência e leveza é a mesma que descreve a relação entre as notas musicais e o efeito que a música exerce sobre o ouvinte.
Além das claras implicações filosóficas da descoberta, a metodologia matemática poderá guiar os cientistas na sintetização de novos materiais.
Esses materiais poderão ser criados para atender a necessidades específicas, por meio da repetição de padrões de estruturas menores, da mesma forma que as proteínas são reunidas para forma a teia de aranha, ou as notas musicais são reunidas para formar uma melodia.
Mas o que têm em comum uma teia de aranha e uma melodia?
A conclusão de David Spivak, Markus Buehler e Tristan Giesa parece surrealista.
Segundo eles, os padrões estruturais das proteínas estão diretamente relacionados com a leveza e a resistência da teia de aranha, da mesma forma que a "tensão sônica" das notas da canção está relacionada com a resposta emocional induzida no ouvinte.
Ao encontrar similaridades com exatidão matemática entre coisas tão diferentes, os pesquisadores demonstraram que sua metodologia pode ser usada para a comparação de descobertas científicas em áreas diferentes.
Modificar o ambiente
A conexão entre a forma e a função de um material é estabelecida por um mecanismo chamado "log ontológico", ou olog.
Um olog é um meio abstrato de categorizar as propriedades gerais de um sistema - seja ele um material, um conceito matemático ou um fenômeno - revelando as relações inerentes entre sua estrutura e sua função.
"Há indícios crescentes de que padrões similares de estruturas materiais em nanoescala, tais como aglomerados de ligações de hidrogênio ou estruturas hierárquicas, governam o comportamento dos materiais no ambiente natural," afirma Buehler.
Segundo ele, o estudo permitiu então "compilar informações sobre o funcionamento dos materiais de forma matematicamente rigorosa e identificar os padrões que são universais para uma grande classe de materiais."
"Seu potencial para modificar o ambiente - no projeto de novos materiais, estruturas ou infra-estrutura - é imenso," conclui o pesquisador.
Fonte: Inovação Tecnológica

0 Comentários
Com seus comentários, você ajuda a construir esse ambiente. Sempre que opinar sobre as postagens, procure respeitar a opinião do outro.
Muito obrigado por participar de nosso Blog!
Abraços!